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Definitions
(disclosure in the use of AI term)

Artificial Intelligence (ATI) is here used as umbrella term encompassing a wide range
of computer science technologies aiming at giving machines the ability to perform
tasks requiring human intelligence such as problem solving, decision taking and image
recognition.

These are often accomplished by adoption of sophisticated machine learning (ML)
algorithms to mimic human learning capability (Meské and Gorog 2020), but also
simpler approaches such as iterative learning.

The same work hypothesis as in the review Applications of artificial intelligence in stereotactic body
radiation therapy (Mancosu et al, PMB, 2022)

:> so this includes the use of automatic planning such as
Knowledge Based Planning (i.e. Rapidplan)
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AL in target and OAR segmentation

Atlas contouring in lung cancer

e—

Clinical evaluation of atlas and deep learning based automatic n
contouring for lung cancer ﬂj

Wouter van Elmpt“, Andre Dekker*

Ltd,, Oxford, United Kingdom

Tim Lustberg **, Johan van Soest*, Mark Gooding °, Devis Peressutti”, Paul Aljabar °, Judith van der Stoep°,

Automatic contouring as a tool:

> to reduce contouring time
» and improve consistency
> In particular for SABR: large

* Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands;  Mirada Medical n U m b e I" (o) f O A RS

20 CT scans of NSCLC pts

Lung, esophagus, spinal cord, heart, mediastinum

20 min manual contouring
8 min atlas contouring
10 min deep learning contouring

Conclusion

Automatic contouring software as a starting point for clinical
contours of OARs in lung radiation therapy allows for a significant
time gain when contouring lungs, spinal cord, heart and medi-
astinum. DLC shows promising results with regard to the creation
of institution-based models and to automatically generate high
quality contours, providing a greater time saving compared to
existing solutions. In addition, clinicians are able to assess if a soft-
ware generated contour will potentially save time or not.
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? frontiers
in Oncology

published:

on

Training and Validation of Deep
Learning-Based Auto-Segmentation
Models for Lung Stereotactic
Ablative Radiotherapy Using
Retrospective Radiotherapy
Planning Contours

Performance of a commercial
pre-treatment deep learning
based on self segmentation
software (Lymbus)

Comparison among two centers

200 CT scans

OARs and GTV
Test on B0 + 50 CT scans

AL in target and OAR segmentati
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FIGURE 1 | Dice Similarity Coefficient (DSC, A) and 95% Hausdorff distance (HD, B) box plots from comparing deep learing-based auto-segmented contours to

clinical contours for lung stereotactic ablative radiotherapy planning structures. (PBT, proximal bronchial tree; GTV, gross tumor volume).

Deep learning contours for structures with
more variations, due to anatomic or disease
factors, perform less accurately
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ELSEVIER journal homepage; oo Teeniou e eom To generate a synthetic CT (sCT) of the lung using
Original Article | the deep learning architecture cGAN trained on

A deep learning approach to generate synthetic CT in low field

MR-guided radiotherapy for lung cases IOW'field MR (O35T) lmages Of 3 2 paTlenTS The
Jacopo Lenkowicz?, Claudio Votta*"*, Matteo Nardini?, Flaviovincenzo Quaranta®, Francesco Catucci®, SCT was Val |da1'ed on two COhO rts Of 10 pCl'henTS

Luca Boldrini %, Marica Vagni?, Sebastiano Menna®, Lorenzo Placidi®, Angela Romano ¢, Giuditta Chiloiro?,

Maria Antonietta Gambacorta?, Gian Carlo Mattiucci <, Luca Indovina?, Vincenzo Valentini ®<, eac h one | n- h ouse and 'I' h e GnOT h er com l ng f roma
Davide Cusumano *" . ! .

2 Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome; ® Mater Olbia Hospital, Olbia (SS); and € Universita Cattolica del Sacro Cuore, Rome, Italy d l ff e r‘enT h OS p I Tal -

Novelty:

Generating sCT of the lung is particularly challenging due to the heterogeneity of electron density. They are the first to
roduce a %C,T by r'cilmmg a cGAN that has high image fidelity and reasonable 'dose planning performance. Moreover, they
Broved stability of the generated sCT acrossdifferent MR machines.

Results:

Image accuracy was_evalugted by computing MAE and ME of the HU maps which resulted in very low scores thus demonstrating
goo 'm‘é%% quality. Dose distribution comparison was performed b ‘?amma passing rates and target DVH_comparisons. A passing
ra‘re of 95% for a 2%/ b erence in dose was found for PTV V95% criteria. The

P
it S d. H to 2 i
o e lon Was o BridscTra s wn’g\lf TV density override which is typically used in MR-linac

2
atter decreased to 11% by comparing CT versus hy sCT,asCT

workflows.

Discussion:

® Images were taken in deep-hold inspiration which should help to the stability of the structures producing better quality

training images.
The relatively high difference in dose comparison makes this particular sCT suitable for palliative cases.

® To be able to apply this to curative cases e.g. high cioses per fr‘ac’riork the auth r'sspr'opoTe, two things should be done:
obtain a larger trdining cohort and use a more complex neural network with perhaps novel image pre=processing or data
augmentation techniques.
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AT in treatment planning

Classified in two categories:

1) Traditional KBP methods: studies
that require geometric or
anatomical features to either find
the best-matched case(s) from a
repository of prior treatment plans
or to build dose prediction models.

Received: 19 January 2021 Revised: 26 April 2021 Accepted: 2 June 2021

JOURNAL OF APPLED CLNICA
REVIEW ARTICLE MEDICAL PHYSICS

Knowledge-based radiation treatment planning: A data-
driven method survey

Shadab Momin | YaboFu | YangLlei | Justin Roper | Jeffrey D. Bradley |
Walter J. Curran | TianLiu | Xiaofeng Yang
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FIGURE 2 The total number of traditional KBP investigations
on dose prediction for various cancer sites. EC, Esophageal
cancer; NC, Nasopharyngeal carcinoma; HC, Hepatocellular
Cancer



AT in treatment planning

Classified in two categories:

2) Deep learning (DL) methods—
according to their techniques of
utilizing previous knowledge.

Most studies for lung have been
based on traditional automatic
methods
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FIGURE 5 The total number of DL-based dose prediction
investigations for various cancer sites. NC, Nasopharyngeal
Cancer; PD, Personalized Dosimetry




AI in treatment planning: examples

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 6, 2016

Development and evaluation of a clinical model for lung eren IGnnln
cancer patients using stereotactic body radiotherapy ’rechnl ues, fumor oca’rlon eam
(SBRT) within a knowledge-based algorithm for ar'r'angemen’rs
treatment planning

Karen Chin Snyder,2 Jinkoo Kim, Anne Reding, Corey Fraser,

James Gordon, Munther Ajlouni, Benjamin Movsas, and
Indrin J. Chetty

- evawcac;ré?myft’ghj' v?odel rformance&

- data set: 105 SBRT plans (several

Tumour Ioca’rlons beam arrangements,
IMRT and VMAT)

- model validation: 25 pts

- KBP based on Rapidplan, can gener'a‘re
g SBRT plans comparable ’ro

clmlcal ones (but some trade-

between the spinal cord and ’rhe hear"r)




AT in treatment planning: examples

> J Appl Clin Med Phys. 2021 Nov;22(11):54-63. doi: 10.1002/acm2.13427. Epub 2021 Sep 25.

- Automatic planning as an

Fast generation of lung SBRT plans with a essential tool for fast
knowledge-based planning model on ring-mounted dapti bl .
Halcyon Linac adapTive re-planning.

Justin Visak 1, Aaron Webster 1, Mark E Bernard ', Mahesh Kudrimoti ', Marcus E Randall 7,
Ronald C McGarry T Damodar Pokhrel '

- treatment planning
feasibility of SBRT for
centrally located lung
tumors on Halcyon Linac via
a previously validated KBP
model

Do (Gy)

This study reports on the plausibility of generating lung SBRT plans for centrally located early-stage
NSCLC patients on ring-mounted Halcyon Linac using a previously trained and validated Truebeam
KBP model. It has been demonstrated that the KBP model can be used to generate high-quality lung
SBRT plans on the Halcyon Linac that are dosimetrically equivalent or better quality when
compared to manually generated Halcyon and SBRT-dedicated Truebeam plans. This lung SBRT

S
s
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AT in delivery: tumour position tracking (MAGIK)

Pre-treatment \ During treatment

-

Real-time kV
imaging

Personalized
anatomic model

}\"’ - M gy

Markerless Tumour Tracking

v

i
Diaphragm Tumor
segmentation segmentation

2D-3D estimation

4D-CT to build
model of
patient anatomy

BM) Open MArkerless image Guidance using
Intrafraction Kilovoltage x-ray imaging
(MAGIK): study protocol for a phase I
interventional study for lung

cancer radiotherapy

Marco Mueller @ ," Jeremy Booth,? Adam Briggs,? Dasantha Jayamanne,?
Vanessa Panettieri,> Sashendra Senthi,* Chun-Chien Shieh,"* Paul Keall'

DDDDDDDDDDDDDDDDDDDDDDD

Next kV image

The anatomic model is used to segment the
tumour in the intrafraction kV images

The 3D tumour position is estimated from
the 2D position = using a statistical model

DOI: 10.1136/bmjopen-2021-057135




; ; . Deep learning driven predictive treatment planning for adaptive ‘M |
AL in dZIlVCf‘Y- Tumour Changes radiotherapy of lung cancer ko
Donghoon Lee*, Yu-chi Hu*, Licheng Kuo*, Sadegh Alam*, Ellen Yorke®, Anyi Li*, Andreas Rimner ",
. ) Pengpeng Zhang **
To predict anatomical changes of lung tumour and

esophagus during definitive radiotherapy, potential
tumour shrinkage, improve therapeutic ratio

The sw analyzes the spatial-temporal distribution
using a data-set of 60 pts

Seq25Seq (software)

It starts with the primary tumor and esophagus
observed on the planning CT to predict their
geomeftric evolution during radiotherapy, on a
weekly basis

then, it updates the predictions with new info
(snapshots) acquired via weekly CBCTs.

Week4
&edic‘red G'F(\e/ (blue and lila) and esophagus contours
(green) from planning to week 6




..weekly predictive plans

- ok 60 Gy prescription dose to the PTVs

- reduced mean dose to esophagus due to tumour shrinkrage (reduced
NTCP esophagitis)

Relative Dose (%)
50

Weekly JGTV
coverage maintains

Weekly
: "-«.-...\ mean dose decreases
| IR
N'""M.
Weekly lung mean ——

“\nh
d e — 1
dose similar e et i

~ \
L O —

2000 4000 6000

Dose (cGy)

DVHs of predictive plans from week 1 o week 6

%.im roved efficiency and effectiveness in the whole




Following the patient journey: new avenues
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AI for outcome prediction using doses and

Images

Received: 16 September 2020 I Revised: 20 July 2021 I Accepted: 2 August 2021

DOI: 10.1002/mp.15178

RESEARCH ARTICLE MEDICAL PHYSICS

Combining computed tomography and biologically
effective dose in radiomics and deep learning improves
prediction of tumor response to robotic lung stereotactic
body radiation therapy

Michele Avanzo' | Vito Gagliardi' | Joseph Stancanello? | Oliver Blanck® |
Giovanni Pirrone' | Issam El Naga* | Alberto Revelant® | Giovanna Sartor’

Aim: To improve the
performance of ML models in
predicting response to NSCLC
treated with SBRT

How: integrating image
features from CT planning
with BED features

Conclusions: including BED
features improves response
rediction of ML models for
SCLC SBRT pts, regardless
the use of CT features




AI&SBRT

Radiomic features

Unstable

Hybrid approach
Al plus human supervision before
the next part

+ harmonization
+ speed up the process

Human responsibility

Only proof of concept
Human supervision after
+ High potentiality
Responsibility?

Need of a new legislation

Many retrospective studies

Need for prospective studies

Now ML; DL should be fully
explored

Need to QA each step of the process

Mancosu et al. PBM 2022



Main Findings

1. Al in target and OARs segmentation:
« Fully automated segmentation with no human supervision is not currently feasible
« Hybrid approach with auto-segmented volumes reviewed by an experienced clinician could speed up the SBRT
contouring process
* Necessity of guidelines and benchmark studies for contours harmonization (Kawata et al, Cha et al, Ibragimov et al,
Dong et al, Cui et al)
2. Alin SBRT planning:
* Fully automated SBRT planning guided by Al is still not available
« The prediction of dose distribution from a high-quality plan looks promising (Skarpman Munter J and Sjélund, Campbell
et al, Kearney et al, Wang et al, Momin et al)
« Al automation could help in planning harmonization, as the quality of the treatment plan still depends on the planner’s
experience
3. Al during the SBRT delivery:
« Al applications in SBRT delivery are in an early stage of exploration
» Most of the studies were retrospective, with few Al-based approaches applied in clinical practice (Liang et al, Liu et al,
Valdes et al)
» An effective integration with the radiation units and related control systems are necessary to use Al tools in practice
4. Al for outcome prediction after SBRT:
* Prospective studies aiming at validating radiomic findings are required
« Machine learning algorithms have the potential to predict tumour control from radiomic features (Lafata et al, Dissaux et
al, Yu et al, Wei et al)
The potential of deep learning has still to be fully explored and is of high interest Mancosu et al. PBM 2022



Applying Artificial Neural Networks to

Develop a Decision Support Tool for
Tis—4NOMO Non-Small-Cell Lung Cancer Treated
With Stereotactic Body Radiotherapy

Artificial neural network to predict treatment outcomes for NSCLC patients receiving SBRT

Retrospective, 692 pts with Tis-TANOMO NSCLC treated between 2005-2019, plus 100 pts for
external validation

Two neural networks for prediction of overall survival and cancer prediction 5 ys after SBRT

Neural networks could select low risk cancer progression groups, suggesting that 48% of the
patients with peripheral Tis-TANOMO NSCLC can be at low risk for cancer progression

Use: about half of the patients with Tis. TANOMO NSCLC recommended to undergo SBRT with
the same dose prescription could be informed beforehand of the prediction of a low cancer
progression rate on the basis of the group into which they were cathegorized.



Where could AT be especially useful
for lung RT and lung planning?

Care path/
automation of the care path

Prediction, especially in SBRT

Adaptive and fumortracking

Autosegmentation

many structures fo draw, ex for the bronchus
case: aorta, brachial plexus (left and

right) oesophagus, heart, intfermediate
bronchus, main bronchus’(left and rugh‘r?,
pulmonary artery, stomach, thoracic'wall (left
and right), frachea, vena cava inferior and vena
cava superior

In the "systems” dedicated to SBRT




Issues for the RT community

Limits in the adoption of existing tools
Technological e.g. autosegmentation

Model performance
several manual adjustments are  required
(Yang JZ, AAPM 2017)

Legal (hospital, industry) Intellectual property, data transfer,
data sharing agreement

Implementation in the clinic  Commissioning
QA procedures
Reproducibility tests
Medical Device Regulation requirements




Al roadmap for stage llI
NSCLC

Unmet clinical needs

Key enabling technologies: big
data and analytics

Medical imaging
Key enabling technologies:
deep / machine learning

Biomarkers

Key enabling technologies:
deep/machine learning, X-omics,

Key enabling technologies:
deep / machine learning

Decision aids

Key enabling technologies:
information visualization

. cancers ﬁw}\py

Review
Artificial Intelligence Applications to Improve the Treatment of
Locally Advanced Non-Small Cell Lung Cancers




Tumor Heterogeneity Research and o flold of radiation bloloay le I P, F h :
g y l;a;n;,ll:]g'u_;i,:é:udelmld,;’[:m‘;mming Tumor heterogeneity—differences in uture approac es 'n

Innovation in Biologically Based Radiation e Al L ::3:3:21[03‘2 ""“.Tf,".’.if}i'.f."f?fﬂi??if.m.f

- Therapy From the National Cancer Institute failure of modern cancer therapy radiation biology must
_Radiation Research Program Portfolio .
include

Jeffmy C. Buchsbaum, PhD, MD, AM*; Michael G. Espey, PhD*; Ceferino Obcemen, PhD*; lacek Capala, PhD*; Manscor Ahmed, PhD*;
Patje G.Pasanna, PhD'; Bhadosin Vikam, PhD'; Julie A. Hong, MS'; Beverly Teicher, PhD'; Molykutty J. Asyanialayil, PhDY;
_ Michelle A. Byficky, PhD'; and C. Norman Coleman, MD*

Buchsbaun, JCO, 2022 .
adaptation

and plasticity data

..how radiobiology and clinical care How is the field of radiation biology evolving to
are innovating and evolving to address meet the challenges?

heterogeneity | , l as w e” as
One key concep‘r: Radiotherapy Radiopharmaceuticals

radiation in its different forms as

different drugs IongifUdina' mU“'iscale

..That in many cases can have very precise e r— measurements and
spa‘rlal.and Tem(forjal control Th%r'gbyl ol i therpy o il icsonate Ay
g$}22¥!0 y pr'o UCIng a SpeCIfle Io oglca '('I.IULLIUII«.:ladev,qv wllecly s o o - pred|ct|on

This approach includes using imaging and Radiobiology
molecular biomarkers to enable
assessment and determine the
appropriate treatment parameters using e Coneer modl wing
radiation plus other systemic therapies. B e AL Voo taluphnk

regimen 10 tune host response

Al and machina laarning for dosing
and radiolagsal image analysis

LIMRO...
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TRABLE 1. Sedeched Hotl Resswrch Topcs Reganing Radaton Oncobgy Targelng and Hederogenety

Topic

Research Questions

Comments and Rede maces PMIDS)

Physics technology

Do ultss b dose delivey inoss s e Berapeulic rafio?
Does i spswre bumar?

1. No normal tssue sparing wiss seen at 10 Gy& (33520724).

2. Pessble spawing of normal Bssue &t higher dose rates
(32222332).

3. Beamn passmedess nesd o be shudied (32853355,
33548337).

4. Planning may be compliex (33924627).

5. Tumar cals may not be pared & doses over 40 Gy&s
(25031268, 291 72684).

Olgometastses

Can cure be achieved for some palenlts wilth meds Ssiic
dsssse via e use of radation heray?

1. Dats suppoding it these palents exst (30521067).

2. Plents may significanty benefit 7 aligometsstalic lesions
are b b with radastion n addion o chematherapy in
some cases (28973074).

Addressing tumor heterogeneity:
present state and future
directions

Radophurmace uScsls
(RPT)

What is e opfimal combinaion of RPT with other Serapeuic
modaies, including immunoihess oy and externsl RT (both
need proper RPT dosime by P

k& there an adwankage o usng combins fons of radionuciides
wilth diffess it cangess of emi bed radiaion, and high- and low-
rolecy ke weigh! bargeling spenls, i madch e sixe of the
fumar and Larget distribuion, and 1o kake adwantage of
different cisarance routes (mnal and hepalic)?

1. Owendew and need for dosimedry (33610302, 33277396).

2. Niphes emiter support cursen By (34378064).

3. Two and possbly fewer Sme ponks nesded for doSmedy
(30761545, 33443063).

4. Combinaion hesspy has graomee (34625828)

Radiaion biology

Because radialion inducss brgels| do malich isls necesgarily
need 1o be malched o e on-restment conded more
precaedly?

1. Radistion laged induction ossles 3 new opportunily

2. The type of radision affecls the genslic expresson pallen
significantly (285994208,

3. Senesoence and radalion side effec s are sy intetwined,
making new decoveres n TS spece polent ally shle o
decss e ahe normal e sde eflecs 29776716).

Combined modsity
theray

Would eariier inlegration with radision bensfil daug design,
green these daugs nead 1o be abie 0 wok well with
rdisSon?

1. Involvement of radision esrly in daug desgn may open up
new sucoess (34348172).

2. Poposed standards o imgrove the curmenl standards have
recently been publshed by e NO pesciinical UOL
consorSum (34454045).

Immuno-oncalogy

HowGan we sslect doseand fraclonst on loopSmizeimmuno
oncaliogy (the atuconsl efflect)? Sequenc

Whiat are the hest homaders of 3 dinicsl stsoonsl response?

Howdo we Sudy and prevent Sdeeflects, in parSiculs dronic
Sde effeck, fom mmunooncalogy hat & or is nat
combined with radisSion?

1. Dats show st Trexd reguistes inducsd tumaor
memunogenicly (2855841 5).

2. Fracton size= and methods o best nduce and mantsin an
abeoopal effect aw vassbie and under nwedgsiion
(33827904).

Normal Sssye
hederogens by

What biomadesrs should be wad, and how should they be
wead, o popedy messure heterogenely of cadistion
msponse and predicd dinical ouioome?

1. Genslic rak prediciion (33398158).
2. lmmune s=ponee (28630051).
3. MicraRNA (34364390).

4. Lgud biopses (33049623).
5.ciDNA (31711920).

6. Call-f== DNA (33828112).
7. DNA paofiling (28855864).
8. Novel apgraaches 1o concursn







Major points of the talk

- Terminology
- AT application areas

- Needs and potential development

- Issues in lung RT - AI




76 pts early stage NSCLC, SBRT,
GTVonCT,CTVonCT+ PET/CT,+3 mmPTV
Cyberknife, 456Gy, 3 fractions

Tumour response on follow-up CT, sometimes PET/CT

Input data Feature extraction

Radiomics

Deep learnin

Classifiers




AI for outcome prediction using images

2018 Feb;45(2):207-217.
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= Ty Clinical model - N Radiomic model (b1) Prediction of disease-free survival by the PET/CT radiomic signature in non-small
231 1™ 231 1% cell lung cancer patients undergoing surgery
a - , - a @ i+ "“-,.,l Margarita Kirienko?, Luca Cozziz, Lidija Antunovic?, Lisa Lozza%, Antonella
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. |+ 295 patients treated with surgery

g T 5 e o The main finding of the study was
I that image-derived parameters

| Low-tisk (traning) = = = Hghaisk(training) | OUTp?r‘formgd Common CI inical .
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and c¢), and their combination (d) for the training and validation groups within the PET+CT dataset

PET dataset (n = 259) Univariate p value Cox regression p value
Parameter Clinical model (a) Radiomic models (b) Radiomic and clinical model (c)
b1 b2
Ele 2%~ 3F
AUC (95%Cl) for the validation cohort 0.61 (0.50-0.73) 0.62 (0.52-0.70) 0.68 (0.58-0.74) 0.65 (0.50-0.72) ,«/§
WgpoLaS
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