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Definitions 
(disclosure in the use of AI term)
Artificial Intelligence (AI) is here used as umbrella term encompassing a wide range
of computer science technologies aiming at giving machines the ability to perform
tasks requiring human intelligence such as problem solving, decision taking and image 
recognition. 

These are often accomplished by adoption of sophisticated machine learning (ML) 
algorithms to mimic human learning capability (Meskó and Görög 2020), but also
simpler approaches such as iterative learning.

The same work hypothesis as in the review Applications of artificial intelligence in stereotactic body
radiation therapy (Mancosu et al, PMB, 2022)

so this includes the use of automatic planning such as 
Knowledge Based Planning (i.e. Rapidplan)



Following the patient journey
Where is AI commonly used? 
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AI in target and OAR segmentation
Automatic contouring as a tool:

Ø to reduce contouring time
Ø and improve consistency
Ø In particular for SABR: large

number of OARs

20 CT scans of NSCLC pts

Lung, esophagus, spinal cord, heart, mediastinum

20 min manual contouring
8 min atlas contouring
10 min deep learning contouring
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AI in target and OAR segmentation

200 CT scans
OARs and GTV
Test on 50 + 50 CT scans

Performance of a commercial
pre-treatment deep learning
based on self segmentation
software (Lymbus)

Comparison among two centers Deep learning contours for structures with
more variations, due to anatomic or disease
factors, perform less accurately



Following the patient journey
Where is AI commonly used? 



Novelty: 
Generating sCT of the lung is particularly challenging due to the heterogeneity of electron density. They are the first to 
produce a sCT by training a cGAN that has high image fidelity and reasonable dose planning performance. Moreover, they 
proved stability of the generated sCT across different MR machines.
Results: 
Image accuracy was evaluated by computing MAE and ME of the HU maps which resulted in very low scores thus demonstrating 
good image quality. Dose distribution comparison was performed by gamma passing rates and target DVH comparisons. A passing 
rate of 95% for a 2%/2 mm criterion was found. However, up to 20% difference in dose was found for PTV V95% criteria. The 
latter decreased to 11% by comparing CT versus hybrid sCT, a sCT with GTV density override which is typically used in MR-linac
workflows.
Discussion:
• Images were taken in deep-hold inspiration which should help to the stability of the structures producing better quality 

training images.
• The relatively high difference in dose comparison makes this particular sCT suitable for palliative cases.
• To be able to apply this to curative cases e.g. high doses per fraction, the authors propose two things should be done: 

obtain a larger training cohort and use a more complex neural network with perhaps novel image pre-processing or data 
augmentation techniques.

Aim: 
To generate a synthetic CT (sCT) of the lung using 
the deep learning architecture cGAN trained on 
low-field MR (0.35T) images of 32 patients. The 
sCT was validated on two cohorts of 10 patients 
each, one in-house and the another coming from a 
different hospital.
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Classified in two categories:

1) Traditional KBP methods: studies 
that require geometric or 
anatomical features to either find 
the best-matched case(s) from a 
repository of prior treatment plans 
or to build dose prediction models.

AI in treatment planning



Classified in two categories:
2) Deep learning (DL) methods—
according to their techniques of 
utilizing previous knowledge.

• Most studies for lung have been 
based on traditional automatic 
methods

AI in treatment planning
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AI in treatment planning: examples
- evaluation of the model performance & 

applicability to different planning 
techniques, tumor location, beam
arrangements

- data set: 105 SBRT plans (several 
tumour locations, beam arrangements, 
IMRT and VMAT)

- model validation: 25 pts

- KBP, based on Rapidplan, can generate
lung SBRT plans comparable to the 
clinical ones (but some trade-offs 
between the spinal cord and the heart)
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AI in treatment planning: examples
- Automatic planning as an 

essential tool for fast 
adaptive re-planning.

- treatment planning 
feasibility of SBRT for 
centrally located lung 
tumors on Halcyon Linac via 
a previously validated KBP 
model



Following the patient journey
Where is AI commonly used? 
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AI in delivery: tumour position tracking (MAGIK)

4D-CT to build 
model of
patient anatomy

The anatomic model is used to segment the 
tumour in the intrafraction kV images

The 3D tumour position is estimated from 
the 2D position à using a statistical model
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AI in delivery: tumour changes

To predict anatomical changes of lung tumour and 
esophagus during definitive radiotherapy, potential 
tumour shrinkage, improve therapeutic ratio

The sw analyzes the spatial-temporal distribution 
using a data-set of 60 pts
Seq2Seq (software) 

It starts with the primary tumor and esophagus 
observed on the planning CT to predict their 
geometric evolution during radiotherapy, on a 
weekly basis
then, it updates the predictions with new info 
(snapshots) acquired via weekly CBCTs. 

Predicted GTV (blue and lila) and esophagus contours 
(green) from planning to week 6
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…weekly predictive plans
- ok 60 Gy prescription dose to the PTVs
- reduced mean dose to esophagus due to tumour shrinkrage (reduced

NTCP esophagitis)

DVHs of predictive plans from week 1 to week 6

…improved efficiency and effectiveness in the whole process…



Following the patient journey: new avenues
Where is AI commonly used? 

Outcome
prediction
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AI for outcome prediction using doses and 
images

Aim: to improve the 
performance of ML models in 
predicting response to NSCLC 
treated with SBRT

How: integrating image 
features from CT planning 
with BED features

Conclusions: including BED 
features improves response
prediction of ML models for 
NSCLC SBRT pts, regardless
the use of CT features



AI&SBRT

segmentation Plan Delivery Outcome prediction

Hybrid approach
AI plus human supervision before
the next part

+ harmonization
+ speed up the process

Human responsibility

Only proof of concept

Human supervision after

+ High potentiality

Responsibility?

Need of a new legislation

Many retrospective studies

Need for prospective studies

Now ML; DL should be fully 
explored

Mancosu et al. PBM 2022Need to QA each step of the process



1. AI in target and OARs segmentation:
• Fully automated segmentation with no human supervision is not currently feasible
• Hybrid approach with auto-segmented volumes reviewed by an experienced clinician could speed up the SBRT 

contouring process
• Necessity of guidelines and benchmark studies for contours harmonization (Kawata et al, Cha et al, Ibragimov et al, 

Dong et al, Cui et al)
2. AI in SBRT planning:

• Fully automated SBRT planning guided by AI is still not available
• The prediction of dose distribution from a high-quality plan looks promising (Skarpman Munter J and Sjölund, Campbell 

et al, Kearney et al, Wang et al, Momin et al)
• AI automation could help in planning harmonization, as the quality of the treatment plan still depends on the planner’s 

experience
3. AI during the SBRT delivery:

• AI applications in SBRT delivery are in an early stage of exploration
• Most of the studies were retrospective, with few AI-based approaches applied in clinical practice (Liang et al, Liu et al, 

Valdes et al)
• An effective integration with the radiation units and related control systems are necessary to use AI tools in practice

4. AI for outcome prediction after SBRT:
• Prospective studies aiming at validating radiomic findings are required
• Machine learning algorithms have the potential to predict tumour control from radiomic features (Lafata et al, Dissaux et 

al, Yu et al, Wei et al)
• The potential of deep learning has still to be fully explored and is of high interest

Main Findings

Mancosu et al. PBM 2022



Artificial neural network to predict treatment outcomes for NSCLC patients receiving SBRT

Retrospective, 692 pts with Tis-T4NOMO NSCLC treated between 2005-2019, plus 100 pts for 
external validation

Two neural networks for prediction of overall survival and cancer prediction 5 ys after SBRT

Neural networks could select low risk cancer progression groups, suggesting that 48% of the 
patients with peripheral Tis-T4NOMO NSCLC can be at low risk for cancer progression 

Use: about half of the patients with Tis.T4NOMO NSCLC recommended to undergo SBRT with
the same dose prescription could be informed beforehand of the prediction of a low cancer 
progression rate on the basis of the group into which they were cathegorized. 
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Where could AI be especially useful
for lung RT and lung planning?
Care path/ Autosegmentation
automation of the care path

many structures to draw, ex for the bronchus
case: aorta, brachial plexus (left and 
right),oesophagus, heart, intermediate
bronchus, main bronchus (left and right), 
pulmonary artery, stomach, thoracic wall (left
and right), trachea, vena cava inferior and vena
cava superior

Prediction, especially in SBRT

In the ”systems” dedicated to SBRT
Adaptive and tumortracking
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Issues for the RT community
Limits in the adoption of existing tools
• Technological e.g. autosegmentation

Model performance
several manual adjustments are required
(Yang JZ, AAPM 2017)

• Legal (hospital, industry) Intellectual property, data transfer, 
data sharing agreement

• Implementation in the clinic Commissioning
QA procedures
Reproducibility tests
Medical Device Regulation requirements
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…how radiobiology and clinical care
are innovating and evolving to address
heterogeneity

One key concept:

radiation in its different forms as 
different drugs

…that in many cases can have very precise 
spatial and temporal control thereby
potentially producing a specified biological
effect. 

This approach includes using imaging and 
molecular biomarkers to enable
assessment and determine the 
appropriate treatment parameters using
radiation plus other systemic therapies.

Future approaches in 
radiation biology must 
include

adaptation
and plasticity data

as well as 

longitudinal multiscale
measurements and 
prediction

Buchsbaun, JCO, 2022



Addressing tumor heterogeneity:
present state and future
directions
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Major points of the talk

• Terminology

• AI application areas

• Needs and potential development

• Issues in lung RT - AI
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• 76 pts early stage NSCLC, SBRT, 
• GTV on CT, CTV on CT +  PET/CT, + 3 mm PTV 
• Cyberknife, 45Gy, 3 fractions
• Tumour response on follow-up CT, sometimes PET/CT
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AI for outcome prediction using images

Extraction of radiomics features 
from PET/CT for outcome prediction 
(DFS) in NSCLC:
• 295 patients treated with surgery
• The main finding of the study was 

that image-derived parameters 
outperformed common clinical 
predictors, including TNM staging.

2018 Feb;45(2):207-217.
Predictionof disease-free survival by the PET/CT radiomic signature in non-small 
cell lungcancer patients undergoingsurgery
Margarita Kirienko 1, Luca Cozzi 2, Lidija Antunovic 3, Lisa Lozza 4, Antonella 
Fogliata 1, Emanuele Voulaz 5, Alexia Rossi 1 6, Arturo Chiti 1 3, Martina Sollini 7

https://pubmed.ncbi.nlm.nih.gov/?sort=pubdate&term=Kirienko+M&cauthor_id=28944403
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/?sort=pubdate&term=Cozzi+L&cauthor_id=28944403
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/?sort=pubdate&term=Antunovic+L&cauthor_id=28944403
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/?sort=pubdate&term=Lozza+L&cauthor_id=28944403
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/?sort=pubdate&term=Fogliata+A&cauthor_id=28944403
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/?sort=pubdate&term=Voulaz+E&cauthor_id=28944403
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/?sort=pubdate&term=Rossi+A&cauthor_id=28944403
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/?sort=pubdate&term=Chiti+A&cauthor_id=28944403
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/28944403/
https://pubmed.ncbi.nlm.nih.gov/?sort=pubdate&term=Sollini+M&cauthor_id=28944403
https://pubmed.ncbi.nlm.nih.gov/28944403/

